skip to main content


Search for: All records

Creators/Authors contains: "Brose, Ulrich"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Movement facilitates and alters species interactions, the resulting food web structures, species distribution patterns, community structures and survival of populations and communities. In the light of global change, it is crucial to gain a general understanding of how movement depends on traits and environmental conditions. Although insects and notably Coleoptera represent the largest and a functionally important taxonomic group, we still know little about their general movement capacities and how they respond to warming. Here, we measured the exploratory speed of 125 individuals of eight carabid beetle species across different temperatures and body masses using automated image-based tracking. The resulting data revealed a power-law scaling relationship of average movement speed with body mass. By additionally fitting a thermal performance curve to the data, we accounted for the unimodal temperature response of movement speed. Thereby, we yielded a general allometric and thermodynamic equation to predict exploratory speed from temperature and body mass. This equation predicting temperature-dependent movement speed can be incorporated into modeling approaches to predict trophic interactions or spatial movement patterns. Overall, these findings will help improve our understanding of how temperature effects on movement cascade from small to large spatial scales as well as from individual to population fitness and survival across communities.

     
    more » « less
    Free, publicly-accessible full text available December 1, 2024
  2. Bahn, Volker (Ed.)
  3. null (Ed.)
    Abstract Earthworms are an important soil taxon as ecosystem engineers, providing a variety of crucial ecosystem functions and services. Little is known about their diversity and distribution at large spatial scales, despite the availability of considerable amounts of local-scale data. Earthworm diversity data, obtained from the primary literature or provided directly by authors, were collated with information on site locations, including coordinates, habitat cover, and soil properties. Datasets were required, at a minimum, to include abundance or biomass of earthworms at a site. Where possible, site-level species lists were included, as well as the abundance and biomass of individual species and ecological groups. This global dataset contains 10,840 sites, with 184 species, from 60 countries and all continents except Antarctica. The data were obtained from 182 published articles, published between 1973 and 2017, and 17 unpublished datasets. Amalgamating data into a single global database will assist researchers in investigating and answering a wide variety of pressing questions, for example, jointly assessing aboveground and belowground biodiversity distributions and drivers of biodiversity change. 
    more » « less